Differentiable Stacks and Gerbes

نویسندگان

  • Kai Behrend
  • Ping Xu
چکیده

We introduce differentiable stacks and explain the relationship with Lie groupoids. Then we study S-bundles and S-gerbes over differentiable stacks. In particular, we establish the relationship between S-gerbes and groupoid S-central extensions. We define connections and curvings for groupoid S-central extensions extending the corresponding notions of Brylinski, Hitchin and Murray for S-gerbes over manifolds. We develop a Chern-Weil theory of characteristic classes in this general setting by presenting a construction of Chern classes and Dixmier-Douady classes in terms of analogues of connections and curvatures. We also describe a prequantization result for both S-bundles and S-gerbes extending the well-known result of Weil and Kostant. In particular, we give an explicit construction of S-central extensions with prescribed curvature-like data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the de Rham Cohomology of Differential and Algebraic Stacks

We introduce the notion of cofoliation on a stack. A cofoliation is a change of the differentiable structure which amounts to giving a full representable smooth epimorphism. Cofoliations are uniquely determined by their associated Lie algebroids. Cofoliations on stacks arise from flat connections on groupoids. Connections on groupoids generalize connections on gerbes and bundles in a natural wa...

متن کامل

S-Bundles and Gerbes over Differentiable Stacks

We study S-bundles and S-gerbes over differentiable stacks in terms of Lie groupoids, and construct Chern classes and Dixmier-Douady classes in terms of analogues of connections and curvature. c © 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS S-Fibrés et Gerbes sur des Champs Différentiables Résumé. On étudie les S-fibrés et les S-gerbes sur des champs différentiab...

متن کامل

Differential Geometry of Gerbes Lawrence Breen and William Messing

0. Introduction 1 1. Torsors and associated gauge groups 5 2. Gerbes and their gauge stacks 7 3. Morita theory 12 4. The gauge stack as an inner form 13 5. Comparison with the explicit cocycles 20 6. Connections on torsors and groups 23 7. Connections on gerbes 32 8. Curving data and the higher Bianchi identity 40 9. Partially decomposed gerbes with connections 48 10. Fully decomposed gerbes wi...

متن کامل

On Gromov-witten Theory of Root Gerbes

This research announcement discusses our results on Gromov-Witten theory of root gerbes. A complete calculation of genus 0 Gromov-Witten theory of μr-root gerbes over a smooth base scheme is obtained by a direct analysis of virtual fundamental classes. Our result verifies the genus 0 part of the so-called decomposition conjecture which compares Gromov-Witten theory of étale gerbes with that of ...

متن کامل

Discrete Torsion and Gerbes II

In a previous paper we outlined how discrete torsion can be understood geometrically, as an analogue of orbifold U(1) Wilson lines. In this paper we shall prove the remaining details. More precisely, in this paper we describe gerbes in terms of objects known as stacks (essentially, sheaves of categories), and develop much of the basic theory of gerbes in such language. Then, once the relevant t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006